Package 'RIdeogram'

Title: Drawing SVG Graphics to Visualize and Map Genome-Wide Data on Idiograms
Description: For whole-genome analysis, idiograms are virtually the most intuitive and effective way to map and visualize the genome-wide information. RIdeogram was developed to visualize and map whole-genome data on idiograms with no restriction of species.
Authors: Zhaodong Hao [aut, cre], Dekang Lv [aut], Ying Ge [aut], Jisen Shi [aut], Weijers Dolf [aut], Guangchuang Yu [aut], Jinhui Chen [aut]
Maintainer: Zhaodong Hao <[email protected]>
License: Artistic-2.0
Version: 0.2.2
Built: 2024-11-01 04:39:38 UTC
Source: https://github.com/tickingclock1992/rideogram

Help Index


convertSVG

Description

convert svg to png or other format

Usage

convertSVG(svg, file = "chromosome", device = NULL,
  width = 8.2677, height = 11.6929, dpi = 300)

svg2pdf(svg, file = "chromosome", width = 8.2677, height = 11.6929, dpi = 300)

svg2png(svg, file = "chromosome", width = 8.2677, height = 11.6929, dpi = 300)

svg2tiff(svg, file = "chromosome", width = 8.2677, height = 11.6929, dpi = 300)

svg2jpg(svg, file = "chromosome", width = 8.2677, height = 11.6929, dpi = 300)

Arguments

svg

svg file

file

output file name

device

target format

width

output width

height

output height

dpi

output dpi

Value

invisible grob object

Author(s)

Zhaodong Hao, Dekang Lv, Ying Ge, Jisen Shi, Dolf Weijers, Guangchuang Yu, Jinhui Chen


Fst between two Liriodendron groups

Description

Fst values between China east and west groups of Liriodendron chinense and being calculated in a 2-Mb sliding window with a 1-Mb step

Usage

data(Fst_between_CE_and_CW)

Format

data frame

Source

Nature Plants, doi: 10.1038/s41477-018-0323-6


Gene distribution across the human genome

Description

Gene numbers was counted with a window of 1 Mb

Usage

data(gene_density)

Format

data frame

Source

Gencode (https://www.gencodegenes.org/)


GFFex

Description

extract some specific feature information from a gff file

Usage

GFFex(input, karyotype, feature = "gene", window = 1000000)

Arguments

input

gff file

karyotype

karyotype file

feature

feature format

window

window size

Value

dataframe

Author(s)

Zhaodong Hao, Dekang Lv, Ying Ge, Jisen Shi, Dolf Weijers, Guangchuang Yu, Jinhui Chen


Karyotype information of the human genome

Description

The version of this geome is gencode.v29.

Usage

data(human_karyotype)

Format

data frame

Source

Gencode (https://www.gencodegenes.org/)


ideogram

Description

ideogram with overlaid heatmap annotation and optional track label

Usage

ideogram(karyotype, overlaid = NULL, label = NULL, synteny = NULL,
  colorset1 = c("#4575b4", "#ffffbf", "#d73027"),
  colorset2 = c("#b35806", "#f7f7f7", "#542788"), width = 170,
  Lx = 160, Ly = 35, output = "chromosome.svg")

Arguments

karyotype

karyotype data

overlaid

overlaid data

label

track label data

synteny

synteny data

colorset1

overlaid heatmap-1 color

colorset2

overlaid heatmap-2 color

width

width of plot region

Lx

position of legend (x)

Ly

position of legend (y)

output

output file, only svg is supported

Value

output file

Author(s)

Zhaodong Hao, Dekang Lv, Ying Ge, Jisen Shi, Dolf Weijers, Guangchuang Yu, Jinhui Chen

Examples

# Loading the package
require(RIdeogram)

# Loading the testing data
data(human_karyotype, package="RIdeogram")
data(gene_density, package="RIdeogram")
data(Random_RNAs_500, package="RIdeogram")

# Checking the data format
head(human_karyotype)
head(gene_density)
head(Random_RNAs_500)

# Running the function
ideogram(karyotype = human_karyotype)
convertSVG("chromosome.svg", device = "png")

# Then, you will find a SVG file and a PNG file in your Working Directory.

Karyotype for two genome comparison

Description

Grape and Populus genomes

Usage

data(karyotype_dual_comparison)

Format

data frame

Source

MCscan


Karyotype for three genome comparison

Description

Amborella, Grape and Liriodendron genomes

Usage

data(karyotype_ternary_comparison)

Format

data frame

Source

MCscan


Karyotype information of the Liriodendron genome

Description

Liriodendron chinense genome

Usage

data(liriodendron_karyotype)

Format

data frame

Source

Nature Plants, doi: 10.1038/s41477-018-0323-6


LTR distribution across the human genome

Description

LTR numbers was counted with a window of 1 Mb

Usage

data(LTR_density)

Format

data frame

Source

UCSC (http://genome.ucsc.edu/index.html)


Pi of one Liriodendron group

Description

Pi values of the China east group of Liriodendron chinense and being calculated in a 2-Mb sliding window with a 1-Mb step

Usage

data(Pi_for_CE)

Format

data frame

Source

Nature Plants, doi: 10.1038/s41477-018-0323-6


Pi of two Liriodendron groups

Description

Pi values of the China east and west groups of Liriodendron chinense and being calculated in a 2-Mb sliding window with a 1-Mb step

Usage

data(Pi_for_CE_and_CW)

Format

data frame

Source

Nature Plants, doi: 10.1038/s41477-018-0323-6


500 RNAs' position

Description

500 RNAs randomly selected from all tRNAs, rRNAs and miRNA in the human genome.

Usage

data(Random_RNAs_500)

Format

data frame

Source

Gencode (https://www.gencodegenes.org/)


Synteny for two genome comparison

Description

Genome Synteny between Grape and Populus

Usage

data(synteny_dual_comparison)

Format

data frame

Source

MCscan


Synteny for three genome comparison

Description

Genome Synteny among Amborella, Grape and Liriodendron

Usage

data(synteny_ternary_comparison)

Format

data frame

Source

MCscan


Synteny for three genome comparison with gradient fill

Description

Genome Synteny among Amborella, Grape and Liriodendron with gradient fill

Usage

data(synteny_ternary_comparison_graident)

Format

data frame

Source

MCscan